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User Modelling for Personalised Dressing Assistance
by Humanoid Robots

Yixing Gao, Hyung Jin Chang, Yiannis Demiris

Abstract— Assistive robots can improve the well-being of
disabled or frail human users by reducing the burden that
activities of daily living impose on them. To enable personalised
assistance, such robots benefit from building a user-specific
model, so that the assistance is customised to the particular
set of user abilities. In this paper, we present an end-to-end
approach for home-environment assistive humanoid robots to
provide personalised assistance through a dressing application
for users who have upper-body movement limitations. We use
randomised decision forests to estimate the upper-body pose
of users captured by a top-view depth camera, and model the
movement space of upper-body joints using Gaussian mixture
models. The movement space of each upper-body joint consists
of regions with different reaching capabilities. We propose a
method which is based on real-time upper-body pose and user
models to plan robot motions for assistive dressing. We validate
each part of our approach and test the whole system, allowing
a Baxter humanoid robot to assist human to wear a sleeveless
jacket.

I. INTRODUCTION

Assistive robots in home environments have gained sig-
nificant popularity, not only because of the increasingly
sophisticated manufacturing of robots and the rapid devel-
opments in artificial intelligence, but also due to a huge
potential to reduce the need for human labour in daily care,
especially considering the ageing problem [1], [2], [3], [4],
[5]. However, people vary significantly in their skill sets,
culture, habits, behaviours efc. and these factors affect their
choices and preferences in human-robot interactions. For
a widespread use of home-environment assistive robots in
the future, the ability to provide personalised assistance has
become one of the key issues for such robots.

Although recent studies have enabled assistive robots to
perform some daily tasks in home environments, for instance,
cleaning rooms [6] and cooking [7], assistive dressing re-
mains a challenging task for robots [8], [9] and very little
effort has been put on this particular problem. Through rein-
forcement learning, a dual-arm robot managed to wear a T-
shirt for a soft human mannequin with fixed poses [10], [11].
However, this method might be difficult to generalise when
faced with complicated dynamic human poses. Particularly
since the reinforcement learning component requires multiple
trials and errors, which might put the user at risk. Thus, we
are encouraged by the thought that such problems would be
solved better through studying user preferences and building
user models.
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Fig. 1: The proposed approach enables a Baxter humanoid robot
to provide personalised assistance according to user models and
real-time upper-body pose to assist human to dress. User models
are represented as a mixture of Gaussian for the movement space
of each upper-body joint.

Some methods which learn human preferences in human-
robot interactions focus on object hand-over scenarios. In
[12] and [13], through user studies, they aim to analyse
robot hand-over configurations which users preferred most.
However, poses of users, which directly affects robot mo-
tions, are not considered in these methods. Especially for
users with upper body movement limitations or elderly
people, their reaching abilities and pose preferences require
more attention. Furthermore, due to limitations of current
methods, home-environment assistive robots are not able
to accomplish more complicated tasks, such as providing
personalised dressing assistance.

In this paper, we present an end-to-end approach to model
the movement space of human upper-body joints and enable
a humanoid robot to provide personalised dressing assistance.
Human upper-body pose is recognised with a top-view depth
sensor using randomised decision forests [14]. To model the
movement space of each upper-body joint, an unsupervised
expectation-minimisation (EM) algorithm [15] is used to
learn Gaussian mixture models (GMMs). We first test the
parts of upper-body pose recognition and user modelling
methods with four different user motion datasets, then we
test the whole system on two healthy users by enabling a
Baxter robot to provide user-specific assistance for them to
put on a sleeveless jacket separately. Robot assistive motions
are planned according to real-time upper-body pose and user
modelling knowledge.

II. RELATED WORK

For human-robot interactions, Fong et al. [16] argue that
user modelling is useful for socially interactive robots to
adapt their behaviours to accommodate to different users.
Various methods have been proposed to build user models,
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for instance, a stereotype approach is used in [17] to model
users in a dialogue interaction by defining three subgroups of
user stereotypes with different attributes. Tapus and Mataric
[18] investigate the role of user personalities with a hands-off
assistive robot during post-stroke rehabilitation therapy. For
a companion robot approaching a seated person in a helping
context, Dautenhahn et al. [19] study user preferences for
comfortable approach directions by considering factors such
as gender differences, age and handedness. Apart from robot
approaching, Cakmak er al. [12] present a user study on
human preferences of robot hand-over configurations, using a
simulated kinematics model of human to collect information
on user preferences. Besides, spatial reasoning of users,
such as user visibility and arm comfort, is considered as an
important factor in [13] for object hand-over tasks. However,
the above methods cannot learn human preferences in more
complicated scenarios, such as assistive dressing.

Existing methods on assistive dressing focus more on
robot trajectory learning and lower the impact of user poses
and comfortableness. For instance, a dual-arm robot learned
how to dress a soft human mannequin with a T-shirt through
reinforcement learning, using the topological relationships
between the T-shirt and mannequin [10]. Instead of using
a motion capturing system to detect the hem of the T-
shirt, Koganti et al. [11] used a depth sensor to detect the
coloured hem and estimate human-cloth topological relation-
ship. However, in both studies it is assumed that the arms
of the mannequin are inside the sleeves of the T-shirt while
the hem of the T-shirt is held by the robot, which simplifies
the whole dressing process. Furthermore, with the method of
reinforcement learning, there exists a potential safety issue
for real users which is not solved in [10] and [11].

Human pose recognition plays an important role in many
human-robot interactions. In [10], markers, which are at-
tached on both the mannequin and T-shirt, are detected by
a motion capture system. While some research uses fiducial
markers [20], colour information or motion capture systems
[21] to recognise human pose, some develop their own
algorithms which can only be used for specific experimental
settings [22]. There have been important recent advances in
real-time human pose estimation using a single depth camera
[14], which can be used during human robot interactions
as well. Experiments have shown that the method in [14]
performs extremely well in real time tests. Luo er al. uses
a similar method to recognise human back pose for robot
massage applications [23]. However, it is worth noting that
this study is concerned with a static non-articulated object
(i.e. user backs).

III. PROPOSED APPROACH

In this paper, we propose an end-to-end approach for
home-environment assistive humanoid robots to personally
assist users with upper body limitations to dress by modelling
the movement space of upper-body joints. To recognise the
human upper-body pose, we adopt one of the best performing
whole-body pose estimation methods [14] and adapt it to
a top-view depth camera attached to a humanoid robot.

In section III-A, we discuss how the randomised decision
forests algorithm is applied to estimate human upper-body
pose from a single depth image. Modelling the movement
space of upper-body joints using GMMs is shown in section
II-B. In section III-C, we show how to plan robot motions
for personalised assistive dressing.

A. Real-time human upper-body pose recognition

Considering the dressing need, only the human upper-body
pose is concerned. In this paper, we define eight body parts
for an upper body which are left/right (L/R) shoulder, L/R
upper arm, L/R forearm and L/R hand. We omit the human
head since we are more concerned with arm movements.

First of all, labelled training images for a user should
be collected. Apart from moving the human back, a user
is allowed to move both arms freely within the working
range of the camera while pair-wise pixel-aligned RGB and
depth images are recorded. The user wears clothing with
eight different colours on the upper body during training
data collection, which facilitates the following segmentation
process using colour information.

After collecting RGB and depth images for training,
we extract foreground pixels by filtering the head and the
background, which are shown in Fig. 2b and Fig. 2c. To
generate labels for every pixel remaining in RGB images, we
first calculate sample colours in the L*a*b* colour space for
each piece of cloth, where L* is the luminosity layer, a* and
b* are chromaticity layers. Then, we classify each pixel using
the nearest neighbour rule. Due to the noise caused by light,
the classification result of every image is further improved by
image erosion and image dilation. The segmentation result
of one depth image is shown in Fig. 2d. Because every pixel
in a RGB image is aligned to a pixel in its corresponding
depth image, the labels generated from RGB images can be
used for labelling depth images.

A randomised decision forest [14] is a multitude of de-
cision trees which consist of split and leaf nodes. A split
node can be seen as a weak classifier which contains the
information of a selected feature and a threshold while a
leaf node contains the information of the probabilities that
this leaf node belongs to a certain body part.

For a given pixel n in a depth image, we choose the same
depth comparison features as in [14]:

U v
f@([,n)—d](n—Fdl(n)) dl(n+d1(n)) (1)
where d;(n) is the depth value of pixel n, I indicates the
specific image that pixel n comes from and 6 = (u, v), where
u and v are offsets. The offsets v and v are normalised
by the depth of pixel n to ensure that the features are
depth invariant. This feature calculates the depth differences
between two neighbour pixels of n. If a neighbour pixel lies
outside the bounds of the image or on the background, the
depth of this neighbour pixel is set to a large positive constant
value.
We follow the same training steps as [14] for each tree.
Through training each tree, a pair of offsets v and v and a
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Fig. 2: Data preprocessing. (a) shows an original depth image. (b)
and (c) show the depth and RGB image after filtering head and
background. The user wears clothing with eight different colours
and (d) shows generated body labels for the training depth image
using a colour-based segmentation method.

threshold 7 are learned for every split node and a distribution
over body part labels is stored in every leaf node. In the
testing phase, each pixel from a filtered new depth image is
classified by a learned tree model. Specifically, every pixel
traverses the tree starting at the root and finally reaches a leaf
node after repeatedly evaluating equation (1) and branching
left or right by weak classifiers.

After classifying foreground pixels of a depth image in the
testing phase, we extract the mean point of each body part to
represent the position of its corresponding joint. We calculate
mean values of 2D coordinates for each body part after
filtering outliers, and then convert them to 3D coordinates
using depth information in the camera coordinates. For the
assistive robot to work with the user pose, we convert every
joint position from the camera coordinates to the robot
coordinates according to their spatial relationships.

B. User modelling

Our target population are users with upper body movement
limitations and we aim to enable assistive robots to provide
not only personalised help but also long-term adaptive assis-
tance. For this purpose, we model the movement space of
each upper-body joint.

As we discussed earlier, from any depth image, we can
get 3D joint information of the user in the robot coordinates.
For user modelling purpose, a sequence of N depth images
is used. We define the joint set of a single depth image
as J; = {J},J2, ..., JM} where M is the total number of
upper-body joints, and 7 indicates the depth image. For each
joint, J™ = [, yi", z/*] where m € {1,..., M} and z,y, 2
are 3D coordinates of the joint. The user joints information
are 3D points in the space and are not informative enough
for an assistive robot to know limitations of the user body.
Considering that the working space of each joint is quite
different, we use GMMs to model distributions of each joint
movement. We define J™ = {J7*, J3", ..., J¢'}, where J™

represents the set of joint m from N depth images. The

Gaussian mixture distribution of 7™ is in the form
Km
p(IT™) =D m N (T |y, 7 )
k=1

We adopt the unsupervised EM learning algorithm in [15]
to estimate parameters of each Gaussian model. Given J™,
the minimum and maximum number of mixture compo-
nents, this algorithm outputs the best selected number of
components K™, the obtained mixture probabilities ",
the estimates of the means u}' and covariances X}* of the
components.

In order to quantify the working space for joint m, we
define 77 as the flexibility weight. For joint m, if 7" >
K—lm, then the working space of the k" Gaussian model is
defined as reaching-without-difficulty region. If 7" < ﬁ,
then the working space of the k™ Gaussian model is defined
as reaching-with-difficulty region.

C. Personalised dressing assistance

We propose an intuitive motion planning method for
humanoid assistive robots to plan arm movements. This is
inspired by real scenarios where a human assistant helps
another person to wear a sleeveless jacket. A pre-defined set
of goal positions are sent successively to the robot to execute,
where exact values of these goal positions are determined
dynamically according to real-time human upper-body pose
and user models. The inverse kinematics problems [24] are
solved by Movelt!, the robot operating system (ROS) motion
planning library [25]. Table I shows to which positions
robot grippers move at each step. Human upper-body pose is
recognised at the beginning and the calculated joint positions
in the robot coordinates are the joint positions used in Table
L.

During assistive dressing, the robot uses two grippers to
hold the shoulder areas of a sleeveless jacket respectively,
thus the positions of the robot grippers also represent the po-
sitions of the jacket shoulders. The robot holds the sleeveless
jacket behind the user, which is the first step in Table 1. The
reason that the positions for the robot grippers are named left
or right shoulder area is because the robot grippers should
keep a short distance with the user shoulders. We assume
that the right arm of the user has less moveability and the
robot helps the user wear the right arm first. In the second
step, the robot moves its right gripper to the right hand area
of the user and its left gripper to the right shoulder area
of the user. The offset in the second step depends on both

TABLE I: Robot motion planning procedures

STEP || ROBOT LEFT GRIPPER | ROBOT RIGHT GRIPPER

1 Left shoulder area Right shoulder area

2 Right shoulder area Right hand + user-specific offset
3 Towards left shoulder Right forearm

4 Towards left shoulder Right upper arm

5 Towards left shoulder Right shoulder

6 Left shoulder area No movement
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the current position of the right hand of the user and the
movement space of the right hand. In the robot coordinates,
the current position of the right hand of the user is defined
as Prh = [Trhs Yrn, 2rn)T and the estimates of the means of
right hand are pj* = [pi, pyly w17 where m indicates the
index for the right hand. We define the Euclidean distance

between p,, and p;' as:

i = \/(wrh — 1)+ (Yrn — py)? + (zen — pi2)? (3)

With this information, the robot can put the jacket in
different positions for different purposes. For instance, the
robot can leave the jacket in a reaching-without-difficulty
region for the right hand of the user to assist him/her easily
wear the jacket with little challenges. Moreover, the robot
can leave the jacket in a reaching-with-difficulty region with
more challenges for the user. The reason we emphasise these
challenges in assistive dressing is because our assistive robot
should not simply act as a dressing machine which plans its
actions using only the information of user poses, but we
expect it to become a personalised assistant which can not
only help dress the user but also provide rehabilitation aids
for people with upper-body movement limitations. We be-
lieve that our users should not become completely dependent
on the dressing help from assistive robots, where users may
gradually lose their physical abilities.

In this experiment, we let the robot put the jacket in a
reaching-without-difficulty region for the right hand of the
user. The chosen user-specific offset in step 2 is d;*, where

S.t. 7T;€n Z W

We assume that with right arm movement limitations, the
changes between the new positions of right upper arm and
forearm after step 2 and their starting positions are very
small, so that the robot can still plan its rest actions based on
the starting positions of these two joints. Another reason for
this assumption is because the view of the depth sensor is
blocked by robot arms after they start moving, so that human
upper-body pose could not be detected.

In step 3, the robot uses its right gripper to pull the jacket
along with the right forearm of the user while its left gripper
starts to move towards the left shoulder of the user. The robot
arms should always keep a short distance with each other to
avoid any potential self-collisions. In step 4, the robot moves
its right gripper to the right upper arm of the user, and then
to the right shoulder of the user to finish dressing the right
arm. After the right part of the jacket is worn on the user
body, the jacket adds constraints on the movement of the
robot left gripper. Thus in the final step, the robot simply
moves its left gripper to the left shoulder area of the user
and the user needs to pull back the left arm to wear the left
part of the jacket.

“4)

I = argmin (77'd}")
k

IV. EXPERIMENTAL EVALUATION

We use a Xtion PRO camera which provides RGB and
depth images at the frame rate of 30Hz and frame resolutions
of 640 x 480 pixels. The assistive humanoid robot we use in

the dressing application is a Baxter robot built by Rethink
Robotics. To observe upper body behaviours of users from
a top view, we mounted the Xtion PRO on top of the head
of Baxter (see Fig. 1).

We first validate how our pose estimation and user mod-
elling methods work with four sets of user data collected
from a healthy person. Then we test the whole system by
demonstrating how the Baxter robot makes use of real-time
upper-body pose and user modelling information to assist
human to wear a sleeveless jacket.

A. Evaluating the performance of the pose estimation and
user modelling methods

We collected 3,000 pairs of RGB and depth training
images from a user which covered random arm movements
without occlusions. We used 30, 300, 1,000 and 3,000
training images to train tree models with depth 10 and depth
20 separately. A depth 20 tree is deep enough for the amount
of our training images. For each depth image, we randomly
selected 504 example pixels where every 63 pixels came
from one body part. For each node in the tree model during
training, we randomly generated 500 candidate features and
10 candidate thresholds per feature.

For the testing purpose of upper-body pose estimation and
user modelling, we let the user perform four sets of different
arm movements and we selected 500 images from each set as
testing images. We instructed the healthy subject to pretend
to move the right arm with limitations and the four datasets
were collected as below:

e Motion A: Arms move in left and right directions

e Motion B: Arms move in forward and backward direc-
tions

e Motion C: Arms move in up and down directions

e Motion D: Arms draw circles vertically

The same colour based segmentation method in Section
III-A was used to generate ground-truth body labels for test-
ing images, then we calculated the accuracy of classification
results from different trained tree models, which are shown
in Table II.

It can be seen that while the depth of the tree model keeps
the same, the classification accuracy increases as the number
of training images increases. The classification accuracy is

TABLE II: Classification accuracy of testing images with
different tree models

NUMBER OF DEPTH OF TREE CLASSIFICATION
TRAINING IMAGES MODEL ACCURACY

30 20 42.78%

300 20 63.83%
1000 20 78.20%
3000 20 85.53%

30 10 37.86%

300 10 59.45%
1000 10 73.28%
3000 10 78.36%
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Fig. 3: Extracting 3D joint coordinates. From a testing depth image,
we first classify every pixel with a trained randomised decision
tree model. Then we calculate 2D coordinates of each body part
after filtering outliers and finally we convert 2D coordinates to 3D
coordinates by using depth information.

the highest, at 85.53%, when the number of training images
is 3,000 and the depth of tree model is 20. When the number
of training images is the same, classification accuracy is
smaller with depth 10 tree than with depth 20 tree.

For any testing image, we first classify each pixel and
find the 2D coordinates of each joint. We calculate the
mean position of each body part after filtering outliers and
use this position as the joint position. Then, the 2D joint
coordinates are transformed into 3D joint coordinates using
depth information. The whole process is shown in Fig. 3.

For every testing dataset, we model the movement space of
each upper-body joint in the camera coordinates and draw
the results where the transparency of each Gaussian for a
joint depends on the obtained mixture probability, which is
shown in Fig. 4.

B. Assisting users with dressing

We test the whole system on two users by enabling a
Baxter humanoid robot to provide personalised assistance
to help each user wear a sleeveless jacket, where the robot
makes use of real-time upper-body pose of subjects and
user models. The assumed scenario is that our users have
limitations with their right arm movement and thus their
right arms are supposed to get more help from the assistive
robot while dressing the jacket. We instructed our users to
perform arm movements of Motion A which was described
in Section IV-A and built their user models. We let the Baxter
robot put the sleeveless jacket in a reaching-without-difficulty
position for the right hand of each user, where this position
was chosen according to equation (12). Then, each user was
assisted by the robot following the procedures in Table 1. The
interval of Baxter moving its grippers from current positions
to new positions was 3 seconds.

Fig. 5 shows sequential shots of the Baxter robot assisting
two users to wear a sleeveless jacket individually!. For both

IThe video results can be found at http://www3.imperial.ac.
uk/personalrobotics/videos_new
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Fig. 4: User models for four sets of arm movement with different
limitations. The movement space of each upper-body joint is
modelled as a mixture of Gaussian. The transparency of each
Gaussian depends on the obtained mixture probabilities using an
unsupervised EM learning algorithm. This figure is better shown
on screen.

users, the Baxter robot recognised their real-time upper-body
pose successfully and used this information combined with
user modelling knowledge to plan its arm trajectories. The
robot moves two grippers slowly while dressing users and
the planned trajectories of robot arms are guaranteed to be
safe by adding orientation constraints to robot grippers and
always keeping a minimum distance between two arms of
the robot to avoid any potential robot self-collisions during
trajectory planning. To further guarantee the safety of users,
the whole dressing process is under careful supervision by
researchers.

V. CONCLUSIONS

We have presented an end-to-end approach to build user-
specific models for home-environment humanoid robots to
provide personalised dressing assistance. By mounting a
depth camera on top of the head of a Baxter humanoid
robot, we recognise the upper-body pose of users from a
single depth image using randomised decision forests. From
sequences of upper-body movements, the movement space of
each upper-body joint is modelled as a mixture of Gaussian
learned by an EM algorithm. We have demonstrated how
user models are built with four sets of user data which have
pretended limitations of arm movements. The experimental
results show that our method of modelling upper-body joint
movement of users combined with real-time human upper-
body pose recognition enables a humanoid robot to provide
personalised dressing assistance and our method has potential
use in rehabilitation robotics and long-term human-robot
interactions. We plan to extend our research in enabling
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Fig. 5: Sequential shots of personalised assistive dressing. A Baxter robot assists two users to wear a sleeveless jacket individually. The
robot motions are planned according to the user models and real-time upper-body pose.

humanoid robots to provide long-term adaptive assistance for
users with upper body limitations by updating user models
online.
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